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Selective Video Object Cutout
Wenguan Wang, Jianbing Shen, Senior Member, IEEE, and Fatih Porikli, Fellow, IEEE

Abstract— Conventional video segmentation approaches rely
heavily on appearance models. Such methods often use appear-
ance descriptors that have limited discriminative power under
complex scenarios. To improve the segmentation performance,
this paper presents a pyramid histogram-based confidence map
that incorporates structure information into appearance statis-
tics. It also combines geodesic distance-based dynamic models.
Then, it employs an efficient measure of uncertainty propagation
using local classifiers to determine the image regions, where the
object labels might be ambiguous. The final foreground cutout
is obtained by refining on the uncertain regions. Additionally,
to reduce manual labeling, our method determines the frames to
be labeled by the human operator in a principled manner, which
further boosts the segmentation performance and minimizes the
labeling effort. Our extensive experimental analyses on two big
benchmarks demonstrate that our solution achieves superior
performance, favorable computational efficiency, and reduced
manual labeling in comparison to the state of the art.

Index Terms— Video cutout, segmentation, propagation.

I. INTRODUCTION

V IDEO cutout aims at pixel-level labeling of video frames
given the user annotations by taking advantage of the

continuity of the video content. As shown in Fig. 1, with the
initialization of the human interactions on few frames (the left
column), the cutout method labels the rest frames via prop-
agating the user annotations (the middle and right columns).
This task contributes to a variety of computer vision applica-
tions including human action recognition, object detection and
recognition, and video editing, to name a few.

In this context, many video cutout techniques [1]–[3],
[5], [10] have been proposed to propagate user annota-
tions, adopting optical flow and spatiotemporally connected
Markov chains as basic principles. Nevertheless, there are
many challenging factors in inter-frame propagation including
unreliable optical flow estimation, changing motion patterns,
motion blur, and cluttered backgrounds that adversely affect
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Fig. 1. Illustration of our cutout results (middle and right column). As seen,
it achieves accurate results by propagating user annotations (left column).

the performance. To tackle these challenges, appearance mod-
els such as Gaussian Mixture Models (GMMs) and color
histograms are often incorporated. However, the discriminative
capability of appearance models diminishes when object-
background color models become ambiguous. Besides, most
appearance models only account for higher level image fea-
tures that cannot be explicitly tailored for a particular config-
uration of local receptive fields.

Another concern with video cutout is its labor
intensive nature. Although the state-of-the-art
methods [1]–[3], [6], [7] partly reduced the time-consuming
burden of manual labeling, still a considerable human
interaction is required. For long, interactive video cutout
approaches focused only on segmentation engines, ignoring
how the interaction between the user and the algorithm
should be formed for an optimal utilization of the human
effort. For instance, existing methods propagate annotations
from an arbitrarily selected frame (e.g., the first frame) yet
there is no guarantee that arbitrarily selected frames (or even
human-selected frames) could provide sufficient information
for an optimal cutout.

In this paper, we propose a novel pyramid empowered
confidence maps and an adaptive segmentation framework
that minimizes inter-frame propagation errors for boundary-
accurate foreground segmentation and automatic selection of
the key frames for manual labeling. The confidence map is a
probability density function over the image, which could be
treated as classifier that assigns each pixel a probability of
being foreground. Inspired by the multi-level histograms in
image classification [8], [9], we incorporate a spatial pyramid
color histogram model with a distance-classification dynamic
model, for considering locality information. This model pro-
vides reliable representations at several spatial resolution levels
at the same time. Thus, it improves the discriminative power
of the confidence maps compared to conventional classifiers
that apply only at a single level. Our use of global and
local models results in significantly improved performance
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over [10], [11] that use either local or global cues. In addition,
we explicitly formulate a propagation uncertainty term to
identify the pixels where the label is ambiguous. Within such
regions, we leverage on the local model to fuse appearance
features such as color and shape. The segmentation is finally
achieved by fusing confidence maps in a principled manner.

To make the best use of human feedback, our method selects
the key frames for human annotation. To this end, a substan-
tial effort is spent for pixel-level predictions in [12], which
precludes it from practical use. We revise it on superpixel
granularity. Our prediction model makes the propagation algo-
rithm computationally more efficient by eliminating motion
estimation. Our source code will be available online.1

To summarize, our main contributions are threefold:

• It proposes a new pyramid model to capture appearance
and location information. This model is supplemented
with a set of distance-classification based dynamic fore-
ground models. Contriving them as confidence maps,
our method provides significantly improved foreground
detection performance (Sec. III-A).

• It introduces a local classifier based estimation of
propagation-uncertainty for effective handling of regions
where ambiguous labeling may occur (Sec. III-B).

• It incorporates an annotation frame selection technique to
automatically determine the frames for human annotation,
significantly reducing the labeling effort while further
improving the segmentation results (Sec. III-C).

II. RELATED WORK

Video segmentation aims at offering a binary labeling
mask for each frame, thus separating foreground object from
the background region of a video. Broadly speaking, video
segmentation algorithms can be categorized as automatic
(unsupervised), and supervised methods, according to the level
of supervision required. In this section, we provide a brief
overview of previous works in video object segmentation along
these two major categorizes: unsupervised video segmentation
and interactive video segmentation.

A. Unsupervised Video Segmentation

Given a video sequence, unsupervised video object seg-
mentation aims at automatically separating each pixel into
foreground or background. Unsupervised algorithms do not
require any manual annotation but usually rely on certain
assumptions about the foreground. Appearance or motion
based cues are typically employed for inferring foreground
object [13]–[16]. More specially, some techniques [13], [14],
[17], [18] emphasize the importance of motion informa-
tion. The segmentation is achieved via tracking optical flow
among several frames [13], [17] and clustering trajectories
for selecting the moving objects. Other methods [19]–[22]
employ various saliency stimuli [4], [28] for extracting salient
moving objects as foreground. Addition to utilizing low
level features, several recent methods [23]–[25] consider
object-level cues via exploring the notion of what a generic

1http://github.com/shenjianbing/videocutout

object looks like. They approach video segmentation as a
task of selecting primary object regions in object proposal
domain. Via employing generic object candidate generation
methods [26], [27], a lot of object proposals are generated
in every image/frame. Then, the foreground object is selected
from those object candidates according to different principles
and inference strategies. Recently, deep learning is employed
for video segmentation [29], which gives promising results.

B. Supervised Video Segmentation

Compared with unsupervised video segmentation methods,
interactive video segmentation extracts foreground object from
video sequences with the guidance of human interaction.
Typical interactive methods propagate the annotations
to the entire sequence, by tracking them using spa-
tiotemporal Markov random fields based probabilistic
models [12], [30]–[32], or frame-matching based propagation
[1], [3], [6], [33], and employing various features such as color
and motion [44].

In graphics community, many supervised video segmenta-
tion approaches [1], [3], [6], [10] are also proposed, often with
intensive human interactions. An early work, named as Video
SnapCut [1], incorporates a set of local classifiers using mul-
tiple local image features and integrates a propagation based
shape model into color models. Zhong et al. [3] introduces
directional classifiers to handle temporal discontinuities while
remaining robust to inseparable color statistics. More recently,
[6] obtains the segmentation at each frame by transferring the
foreground mask using nearest-neighbor fields.

Tracking of segmentation results in video sequences has
also been investigated by many works [5], [12], [35]–[40]
in computer vision research. The segmentation is obtained
by either solving an optimization problem with patch seams
across frames [5], using fully connected graphs to model long-
range spatiotemporal connections [37], operating on bilateral
space [39], or adopting super-trajectory for capturing more
rich information [40]. Such methods often require human
annotations in the first frame, and then track them in the
rest of the video. Recently, the work in [12] proposed an
active frame selection method to select a subset of frames
that together minimize the total mislabeling risk over the entire
sequence. However, this strategy is computationally expensive.
The propagation error prediction is done using a forward and
backward pixel flow model, which is impractical for user-in-
the-loop applications. In contrast, our model superpixel-level
matching for predicting propagation error is more efficient.

III. OUR APPROACH

Given an input video sequence, our segmentation process
starts by automatically selecting a set of key frames for human
labeling. It then propagates those labels to the rest of the
video. Using the initial annotations, a static pyramid classi-
fier is established and supplemented with a set of geodesic
distance based dynamic foreground models. Empowered with
discriminative and predictive capacity, a group of localized
classifiers is applied to generate final segmentation results
based on propagation uncertainty.
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In Sec. III-A, we first introduce static and dynamic global
models for confidence map estimation within and across video
frames. Then, in Sec. III-B, we detail our localized models and
propagation uncertainty estimation. Although our key frame
selection is performed first in segmentation process, we state
such technique at last (Sec. III-C), since the selection criterion
is derived from our segmentation method.

A. Global Confidence Maps

Given an input video sequence I = {I 1, I 2, · · ·, I N }
containing N frames and a subset of K frames ̂I =
{I n1 , I n2 , · · ·, I nK } with corresponding binary annotation
masks ̂M = {Mn1 , Mn2 , · · ·, MnK } such that ̂I ⊂ I, our goal
is to assign each pixel a label L = {0, 1} (background = 0,
foreground = 1). We propagate initial annotations ̂M to the
entire video. Each Mni is a label matrix having the same
dimensions as the image frame indexed by the 2D pixel coor-
dinates x, where Mni (x) ∈ L. We begin by oversegmenting
each frame by SLIC [41] (or other superpixel segmentation
[34], [42]) for computational efficiency. We then build global
appearance models to assign each superpixel a probability of
being foreground object. The number of superpixels is set
to 2000 for a 1280 × 720 resolution image. We denote by
Yt = {Y t

1, Y t
2 , · · ·} the superpixel set of frame I t .

1) Static Confidence Map: Traditional global appearance
models do not consider the spatial arrangements of features
and fail to take the full advantage of the prior distributions
available in user annotations. This motivated us to enhance
histogram based models with the structural information by
building a pyramid in the spatial domain then binning the
feature space.

Our method repeatedly subdivides the frame into cells
and computes histograms of color features in these cells.
More specifically, it constructs a sequence of grids at resolu-
tions 0, · · ·, L for each annotated frame I nk , such that the grid
at level � has 2� cells along the coordinate directions. Then,
for each grid κ = 1, · · ·, 2� in ceratin level �, it computes two
color histograms, H �,κ

F and H �,κ
B , from RGB color features at

each level for all annotated frames ̂I. Each pixel contributes
into H �,κ

F and H �,κ
B according to its color value, label, and

coordinate. Therefore, a global pyramid histogram model can
be setup, consisting of a set of atomic histograms {H �,κ

F }�,κ
and {H �,κ

B }�,κ at different grid levels. The foreground prob-
ability Gstat ic(Y t

i ) of superpixel Y t
i from the whole global

appearance model is formulated as:

Gstat ic(Y
t
i )= 1

L

∑L

�=1

∑2�

κ=1

H �,κ
F (Y t

i )

H �,κ
F (Y t

i )+ H �,κ
B (Y t

i )
. (1)

Superpixel Y t
i is represented by its mean color and center

position. If the center of Y t
i locates in the corresponding grid κ ,

H �,κ(Y t
i ) returns it histogram value according to its color;

otherwise it returns 0. An example of constructing a three-
level pyramid of an annotated frame is shown in Fig. 2. Note
the resolution of frame image is fixed, we vary the spatial
resolution where the color points are binned. This results
in a higher-dimensional color histogram representation that

Fig. 2. Illustration of a three-level pyramid histogram model. The image has
two types of color samples: foreground (red circles) and background (blue
squares). We partition the image at three spatial resolution levels. For
each level, we count the color samples in each bin, establishing a higher-
dimensional histogram representation that accounts for color and location.

Fig. 3. Comparison of our global pyramid appearance model to traditional
color histograms. As visible, the foreground confidence maps generated by
our global pyramid model (c) is more accurate than the ones generated by
traditional color histograms (b).

carries more structure information and leads to more reliable
classifications.

In our implementation, each color channel is uniformly
quantized into 32 bins, thus there is a total of 323 bins in
the histogram of each cell. The finest resolution L is set as 3.
We provide detailed discussion for L in Sec. IV-B. Fig. 3
shows two challenging sample frames where the foreground
object and the background scene have overlapping color
histograms, which confuses traditional classifiers built upon
color statistics (Fig. 3 (b)). In contrast, our pyramid appearance
model fuses color and location information, resulting in a
stronger discriminative power and more accurate probability
maps (Fig. 3 (c)).

2) Dynamic Confidence Map: Our static pyramid histogram
model offers far more valuable information than traditional
appearance model, but it is also necessary to build a dynamic
model for capturing inter-frame correspondence and accom-
modating dynamic variations between successive frames.
Therefore, we develop a set of dynamic global classifiers,
which estimate global confidence maps between consecutive
frames and use geodesic distance, for complementing our static
global appearance model.
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Fig. 4. Illustration of our coarse segmentation. (a) Input frame I t . (b) Foreground confidence map Gt
static generated by the static global appearance model.

(c) Foreground confidence map Gt
dynamic generated by the dynamic global appearance model. (d) Combined foreground confidence map Gt by consolidating

(b) and (c). (e) Coarse segmentation results M
t

via (7).

For two adjacent frames I t−1 and I t , where frame I t−1

with known segmentation Mt−1, we construct an undirected
weighted graph G = {V, E}, where V = Yt−1∪Yt . The edges
E link spatially adjacent superpixels or temporally adjacent
superpixels. The superpixels are spatially connected if they
are adjacent in same frame. Temporally adjacent superpixels
refer to the superpixels which belong to different frames but
have overlap. Based on the graph structure, we derive a weight
matrix W . The (a, b)-th element of W indicates the weight
of edge eab ∈ E between two connected nodes va, vb:

wab = ‖μ(va)− μ(vb)‖, (2)

where μ(·) represents the mean color value of the node (super-
pixel) and va, vb ∈ V . The geodesic distance between any two
nodes va, vb is computed as the accumulated edge weights
along their shortest path on the graph G [20], [21]:

dgeo(va, vb) = min
Cva ,vb

∑

p,q
wpq , p, q ∈ Cva,vb , (3)

where Cva,vb is a path connecting the nodes va, vb.
For frame I t−1, the superpixels Yt−1 can be decomposed

into foreground regions F and background regions B according
to the segmentation Mt−1, where Yt−1 = F ∪ B.2 Based on
the graph G, we use geodesic distance to define the similarity
for superpixel Y t

i of frame I t to foreground regions F and
background regions B:

DF (Y t
i ) = min

v f ∈F
dgeo(Y

t
i , v f ),

DB(Y t
i ) = min

vb∈B
dgeo(Y

t
i , vb). (4)

If a superpixel is close to the foreground (background), there
exists a relatively short path to the foreground (background)
nodes, and the value of DF (DB) is small. For superpixel Y t

i
of frame I t , its dynamic foreground probability using geodesic
distance is computed as:

Gdynamic(Y
t
i ) = DB(Y t

i )

DF (Y t
i )+ DB(Y t

i )
. (5)

Our geodesic distance based confidence map is facilitated
by the segmentation of prior frame and evaluated in a frame-
by-frame fashion. We find the dynamic global model captures
variations across the frames accurately, separates object from

2The segmentation mask Mt−1 is pixel-level, we consider the super-
pixel contains more (less) foreground pixels than background ones as fore-
ground (background).

the background clearly, and complements pyramid model
nicely. Therefore, we combine these two models. The final
foreground probability of a superpixel Y t

i is:

G(Y t
i ) = Gstat ic(Y

t
i ) ·Gdynamic(Y

t
i ). (6)

An example for the integration of dynamic and static confi-
dence maps is presented in Fig. 4.

B. Local Classifier by Propagation Uncertainty

After computing global confidence maps, we obtain a coarse
segmentation mask M

t
(see Fig. 4 (e)):

M
t
(x) =

{

1 if Gt (x) > mean(Gt );
0 else.

(7)

for each pixel x=(x, y). Obviously, this thresholding strategy
is not always reliable. To resolve segmentation ambiguities,
we adopt local classifiers on local image features. Previous
methods, e.g., [1], track classifier windows along the fore-
ground boundaries, which is computationally expensive due
to motion estimation and sensitive to topological changes.
Instead, we determine ambiguous regions and apply local clas-
sifiers. To this end, we use propagation uncertainty estimation:

Et (x) = ‖I t−1(x)− I t (x)‖, (8)

as the difference between two successive frames. This mea-
surement is simple yet effective. The intuition is straight-
forward, the variations of appearance usually accompany the
changes of label and potentially lead ambiguity. We separate
the pixels in frame I t into two parts: propagation-uncertainty
set Ut and propagation-certainty set Ct :

Ut = {x |Mt
(x) �=Mt−1(x)} ∪ {x | Et (x)>mean(Et )},

Ct = {x |Mt
(x)=Mt−1(x)} ∩ {x | Et (x)≤mean(Et )}. (9)

The propagation-uncertainty set Ut consists of all the pixels
with changed labels and the pixels with high propagation
uncertainty. The labeling in the propagation-certainty Ct are
relatively reliable, as their labels are consistent and appearance
differences are small for two successive frames.

Then we sample a set of overlapping classifier windows
{W t

1, W t
2, · · ·} cover all the image frame domain, where

the neighboring windows overlap for half-window size. For
frame I t , we only enable the local classifiers whose classi-
fication window covers the propagation-uncertainty area Ut .
We denote the window lattice as �. For each window W t
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Fig. 5. Overview of the segmentation process. See ordered steps (a) through (f).

with its segments M
t
W , we find its best matched window

W
∗

in frame I t−1 via a match score using shape and color
information:

W
∗ = argmin

W

∑

x∈�
|Mt

W (x)− Mt−1
W

(x)|
︸ ︷︷ ︸

shape matching

+ |W t (x)−W(x)|
︸ ︷︷ ︸

appearance matching

,

(10)

where W (x) indicates the pixel color in position x of the
window W . We restrict the matching process inside a h × w
search area, where h (w) is set to the one fourth of the image
frame’s height (width). Using this function, the classification
window W t

i is aligned with a best-matched window of the
previous frame. We establish a discriminative classifier Lt :

Lt (x) = Mt−1(x∗), x ∈ W t , x∗ ∈ W
∗
, (11)

where x∗ corresponds to the nearest pixel of x in W
∗
, measured

via color similarity. A pixel within propagation-uncertainty set
Ut is assigned to the label of the nearest pixel of its best
matched window.

Overall, our local classifier integrates patch-level features
such as shape and appearance information, and pixel-level
matching. In our experiments, we observe such best-matching
strategy based classifier is more effective than traditional color
statistics based appearance models, especially for ambiguous
color distributions.

Finally, we derive our pixel-wise foreground segmentation
mask Mt for frame I t from the coarse segmentation mask M

t

and local classifiers Lt :

Mt (x) =
{

M
t
(x) if x∈Ct ;

Lt (x) if x∈Ut .
(12)

Then we propagate mask Mt frame-by-frame in forward
direction via our global and local classifiers described above.

So far, we described a forward propagation workflow,
where we forward propagate the initial segmentation from
an initial starting frame (see Fig. 5). Recall our approach
accepts K annotation frameŝI = {I n1, I n2 , · · ·, I nK } as input,
the segmentation is proceeded in a bi-directional workflow.
Let (lt , rt ) be the indices of the closest labeled frames before

and after frame I t , respectively (‘left’ and ‘right’ of I t ).3

Our method processes cutout for frame I t starting from its
closest labeled frames on either side in both the forward and
backward directions. For a frame, there are two foreground
masks Mt

le f t and Mt
right computed in forward and backward

processes, respectively. We merge these estimations from two
processes via:

Mt = σ
( (rt − t) · Mt

le f t + (t − lt ) · Mt
right

rt − lt

)

, (13)

where σ() is a boolean function that returns 0 if the input
less than 0.5, otherwise returns 1. Finally, morphological
operations are adopted for filling the small holes of the final
segmentation Mt .

C. Intelligent Annotation Frame Selection

Previous cutout systems arbitrarily select frames with initial
annotations (the first frame or key frames), which cannot
ensure optimal propagation of user annotations. Besides, from
the interaction point of view, it is preferable if the user is
asked to annotate the frames that would best benefit the
segmentation performance (instead of being forced to label
random or less informative frames). To this end, we introduce
an intelligent strategy to select the frames for user annotation
where propagation uncertainty guides the selection of the
frames for manual labeling. For offering a quick answerback,
our annotation frame recommendation system is based on a
simplified model of our propagation method, adopting super-
pixel as basic elements. We simplify the local uncertainty
propagation as a region matching problem of finding the
closest region in the neighboring frame. The match score is
computed as the color difference between two superpixels.

Inspired by [12], we model the probability that a region is
mislabeled due to fail matching. We define a propagation error
for a prior frame I t−k forward to frame I t via a probability
model. All terms are analogously defined for propagating from

3The indices (lt , rt ) might not exist if t < n1 or t > nK . For clarity we
omit such cases, since they do not affect the method description.
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Fig. 6. Automatically selecting the most ‘informative’ frames for annotation. (a) Input video sequence. (b) Traditional cutout method like [1] transfers
the mask of arbitrarily selected frames, which easily loose important information among the whole video sequence, such as the arm of the human. (c) Our
approach selects more useful frames for human labeling, thus obtaining better results and alleviating the burden on the user.

a later frame I t+k . The probability of superpixel Y t
i will be

mislabeled when we obtain its label from frame I t−1 is:

Q(Y t
i , t−1, t) = 1−exp

(−(dapp(Y
t
i , t)+docc(Y

t
i , t))

)

. (14)

The component distances reflect the expected propagating
error. The term dapp computes the color difference between
region Y t

i and the best matched region Y t−1
i ′ in frame I t−1:

dapp(Y
t
i , t) = ‖μ(Y t

i )− μ(Y t−1
i ′ )‖, (15)

where μ(·) represents the mean color of the superpixel.
The term docc measures occlusions using the consistency of

the forward and backward matching:

docc(Y
t
i , t) = ‖−→f (Y t−1

i )+←−f (Y t
i ′ )‖

‖−→f (Y t−1
i )‖ + ‖←−f (Y t

i ′ )‖
, (16)

where
−→
f (·) is the vector from the center of a superpixel to the

center of its best matched superpixel in next frame, similarly,←−
f (·) indicates the vector from the center of a superpixel to the

center of its best matched superpixel in prior frame. Ideally,
if two superpixels Y t

i and Y t−1
i ′ are matched, we expect an

one-to-one correlation and these two flows should be opposite
in direction, making the numerator close to 0.

When there is more than one frame between labeled frame
I lt and current frame I t , we predict errors accumulated over
successive frames. Defining the error recursively, we have:

Q(Y t
i , t − j, t)

= Q(Y t
i , t − j + 1, t)+ (1− Q(Y t

i , t − j + 1, t))

×Q(Y t− j+1
i ′ , t − j, t − j + 1), (17)

where Y t−j+1
i ′ indicates the matched superpixel of Y t

i in
frame I t−j+1. In other words, superpixel of Y t

i was either misla-
beled along some hope from I t−j+1 forward to I t , or else those
hopes were all correct and the wrong label was propagated
from the single hop from adjacent frames I t−j and I t−j+1.

Then we derive a N × N propagation error matrix, where
(t ′, t)-th element indicates the total propagation error from t ′-
th frame to t-th frame:

E(t ′, t) = α(t ′, t) ·
∑

i
|Y t

i | · Q(Y t
i , t ′, t), (18)

where | · | is the number of the elements in the collection.

For modeling our global pyramid appearance estimation,
we introduce an adjustment coefficient α(t ′, t), which repre-
sents the difficulty of propagating labels from frame I t ′ to
frame I t according to their difference on frame level, which
is computed as:

α(t ′, t) =
∑L

�=0
||H �

t ′ − H �
t ||, (19)

where H �
t is our pyramid appearance representation of frame

I t at � level. α(t ′, t) measures the appearance similarities of
two frames with location information.

We find that, the more similarities of two frames, the higher
propagation accuracy we can achieve. This observation is intu-
itive; when two frames are similar in their pyramid appearance
representation, our pyramid model would performance well.
Therefore, this term contributes to selecting the ‘discrimina-
tive’ frames so that our global pyramid appearance model can
offer more reliable prediction.

We define the optimization problem for selecting the best
set of frames from which to propagate, aiming to choosêI

∗ =
{I n1 , I n2 , · · ·, I nK } by minimizing the total expected number
of erroneous pixels in entire video:

̂I
∗ = argmin

̂I ⊂ I

∑N

t=1

(rt − t) · E(lt , t)+ (t − lt ) · E(rt , t)

rt − lt
,

(20)

This propagation error model is derived from our propaga-
tion strategy in Sec. III-B. By above minimization, we select
K number of useful frames according to the expected label
error. Here, we set K as a manually selected parameter.
For every frame I t , we compute its predicted mislabeling
rate when propagating the labels from frame I t ′ , according
to the expected propagation error and dissimilarity between
frames. We then formulate such annotation frame selection
as an optimization problem to minimize total propagation
error. (20) can be efficiently solved by dynamic programming
algorithm, similar to [12]. In this way, our method reduces
total manual effort by keeping the number of selected frames
low. We illustrate the process of our intelligent annotation
frame selection in Fig. 6. Traditional video segmentation
methods arbitrarily select annotation frames, as Fig.6 (b).
While the selected frames maybe miss a part of important
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Algorithm 1 Selective Video Cutout

regions, which easily leads to unreliable segments in other
frames. Our method tries to find the most informative frames
for labelling, thus maximizing the human labor and obtain-
ing better results (see the segments of 100-th and 128-th
frames in Fig.6 (c)). We summarize our video cutout method
in Alg. 1.

IV. EXPERIMENTAL EVALUATIONS

In this section, we first evaluate the overall performance
by comparing to several state-of-the-art methods (Sec. IV-A).
To gain a deeper insight of our method, we study important
parameter and access the performance of the pyramid model
by comparisons to several baselines (Sec. IV-B). We further
validate the effectiveness of annotation frame selection strat-
egy via conducting user study (Sec. IV-C). Finally, runtime
analysis is presented in Sec. IV-D.

Our evaluations are on two benchmarks: the JumpCut
dataset [6] and recently released DAVIS dataset [43]. Jump-
Cut contains five sets of video clips (SNAPCUT, ANIMAL,
HUMAN, STATIC, and FAST sets) provided by [1], [3],
and [6]. The SNAPCUT set contains three example videos
from [1] and the ANIMAL, HUMAN, and STATIC, sets are

collected from [3]. There are 22 video clips in total and
full pixel-level segmentation ground-truth for each frame
is available. Test data spans a wide degree of difficulty,
such as highly complex color distributions, cluttered and
dynamic backgrounds, and fast motion patterns. The DAVIS
dataset consists of 50 videos, accompanied by per-frame
and pixel-level ground-truth masks. Those videos cover var-
ious common challenges in video segmentation, such as
occlusions, dramatic topology changes, and large appearance
variations.

A. Performance Comparison

We first evaluate our approach with respect to existing
methods on the task of foreground mask propagation, which
is the core of our video cutout technique. These experiments
are conducted by comparing with the state-of-the-art alterna-
tives, including the Rotobrush of Adobe AfterEffects (RB09),
which is based on the Video SnapCut [1], discontinuity-aware
video cutout (DA12) [3], and JumpCut (JC15) [6] using non-
successive mask transfer. These three methods are designed for
video cutout purposes. Additionally, we compare to five very
recent segmentation tracking methods: BV16 [39], FP15 [37],
SS14 [5], TS13 [45], and HV10 [46]. For each test video
sequence, we compare the segmentation performance with
manual annotation of the first frame as initialization. To keep
our analysis fair, all the methods predict subsequent frames
without any additional user input and our method only adopts
forward propagation workflow.

1) Performance on DAVIS Dataset: We evaluate the effec-
tiveness of our approach on DAVIS dataset [43] with two
accompanied evaluation tools: intersection-over-union met-
ric (J ) for measuring the region-based segmentation similarity
and F-measure (F ) for measuring the contour accuracy. Given
a segmentation mask M and ground-truth G, IoU score is
defined as J = M

⋂

G
M

⋃

G . Contour accuracy (F ) is for measuring
how well the segment contours c(M) match the ground-
truth contour c(G). Contour-based precision Pc and recall Rc

between c(M) and c(G) can be computed via bipartite graph
matching. Given Pc and Rc, contour accuracy F is computed
as F = 2Pc Rc

Pc+Rc
.

The results for representative sequences and the average per-
formance over the entire DAVIS dataset are reported in Table I.
As can be seen, our approach performs better than all other
methods overall, achieving the best IoU score J on most of the
videos with the average score up to 0.688. Similar conclusions
can be drawn from the contour accuracy F where our approach
also achieves the highest overall score (0.665). Qualitative
comparison results for DAVIS dataset are shown in Fig. 7,
which demonstrate the superiority of the proposed method on
challenging scenarios.

2) Performance on JumpCut Dataset: Following the exper-
imental setup in [6], we report the error rates of the different
methods for automatically propagating segmentation mask
across different frame distances in the five video sets from the
JumpCut benchmark. The propagation errors are computed as
the ratio between the wrongly classified areas of the transferred
mask and the foreground area of the ground-truth mask.
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TABLE I

REGION SIMILARITY (J ) AND CONTOUR ACCURACY (F ) ON A REPRESENTATIVE SUBSET OF THE DAVIS DATASET [43], AND
THE AVERAGE COMPUTED OVER ALL 50 VIDEO SEQUENCES. FOR BOTH TWO MEASURE METRICS, HIGHER VALUES

ARE BETTER. THE BEST RESULTS ARE BOLDFACED, THE SECOND BEST IS IN BLUE

Fig. 7. Qualitative comparison against the state-of-the-art methods on two video sequences from the DAVIS benchmark [43] (stroller and tennis). From left
to right: (a) BV16 [39], (b) FP15 [37], (c) JC15 [6], (d) SS14 [5], (e) TS13 [45], (f) Our method.

For each video sequence, the first 128 frames are tested for
automatically propagating a ground-truth mask from frame t

to t+d , for t = 0, 16, · · ·, 96, with different transfer distances
d ∈ {1, 4, 8, 16}.
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TABLE II

ERROR RATES FOR AUTOMATIC MASK PROPAGATION ACROSS DIFFERENT FRAME DISTANCES ON THE JUMPCUT DATASET [6] FOR SEVERAL DIFFERENT
METHODS: RB09 [1], DA12 [3], SS14 [5] AND JC15 [6]. LOWER VALUES ARE BETTER. THE BEST RESULTS ARE BOLDFACED

TABLE III

PARAMETER SELECTION FOR SIZE OF LOCAL WINDOW WITH IOU SCORE

From the results in Table II, it can be observed that our
method outperforms all other methods, yielding the smallest
error in the majority of the cases. We additionally observe
that many methods degrade in quality over long sequences,
as errors accumulate over time. In contrast, our method
achieves better scores on long videos, experiencing less drift
of the object region than the others.

B. Validation of Our Approach

In this section, we offer detailed exploration for the pro-
posed approach in several aspects with the test videos of Jump-
Cut dataset [6]. We test the values of important parameters,
and verify basic assumptions of the proposed algorithm.

1) Parameter Validation: We study the influence of the size
of the window in our local classifier in Sec. III-B. The size
of the windows can vary according to the size of the object.
In Table III, we explore different choices for the size of the
local window, and report their corresponding performance with
IoU score on the test set of JumpCut dataset [6]. According to

Table III, we choose {30× 30, 50× 50, 80× 80} pixels as the
size of local windows for capturing multi-scale information.

2) Performance of Pyramid Model: To demonstrate the
effectiveness of our global pyramid appearance model,
we evaluate the performance with different pyramid resolu-
tion levels. With a foreground probability map estimated via
pyramid classifier, we obtain a segmentation via a simple
threshold (0.5). We choose the first 100 frames of each test
video of JumpCut dataset [6] and use a pair of annotated
masks of the beginning and the end frames to build the
global pyramid classifiers. We set the max resolution level
L = 0, · · ·, 6. Additionally, as our annotation frame selec-
tion prompts pyramid appearance model, we investigate the
performance of our approach with two annotation frames
recommended by our annotation frame selection system.

The overall IoU scores on JumpCut dataset [6] with different
pyramid layers are presented in Fig. 8. Note that, when the
max pyramid layer L = 0, our pyramid classifier is equal
to traditional single-level color histogram model. Overall,
the performance of the pyramid classifier increases with cumu-
latively larger pyramid layers (L↑), since, obviously, finer
grid size is used and more localized structure information is
considered. However, the classification performance drops as
pyramid layer L continues to increase. This is mainly due
to the overemphasis of location information. The maximum
performance is obtained when L = 3.

Additionally, it is clear that the classification performance
with the recommended annotation frames consistently better
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TABLE IV

IOU SCORES AND SELECTION TIMES WITH DIFFERENT ANNOTATION FRAME NUMBERS IN OUR USER STUDY. BEST RESULTS ARE IN BOLDFACE

Fig. 8. Average IoU score with different pyramid layers L on Jump-
Cut dataset [6]. The fixed indicates the performance with fixed annotation
frames (the first and the last frames), and the recommended refers to the
results using two annotation frames recommended by our method.

than that with fixed annotation frames for all the pyramid
layers, which confirms the annotation frame selection system
plays a positive role in promoting the pyramid appearance
classifier.

C. User Study

We conducted a user study on JumpCut dataset [6] to assess
the degree to which our annotation frame selection system can
reduce the user effort and improve the segmentation accuracy.
A corpus of 10 participants with diverse backgrounds and ages
were recruited to participate in our user study. 12 video clips,
each with 100 frames, are used for training the participants
with our cutout system and Rotobrush tool [1]. In the training
process, the participants were asked to select K annotation
frames (K = 1, · · ·, 5) for obtaining the best possible seg-
mentation results. After the participants had confirmed they
were familiar with the cutout systems, they were asked to
segment 5 test video clips via two cutout methods. Those
test video sequences are different from the training ones, and
each of them also has 100 frames. The participants were
presented with the test video and tried to select K annotation
frames for segmenting as accurately as possible. Thus a total
of 50 video cutout tasks were assigned to each user. To exclude
the influences of difference between annotations initialized by
different users, we use the same annotations for all participants
in the testing process. Our method and Rotobrush tool worked
in the bi-directional workflow.

We recorded the average time that participants took to select
the annotations and computed the average IoU score using the

TABLE V

COMPARISON OF AVERAGE RUN TIME (SECONDS PER FRAME) WITH 480p
VIDEO CLIPS OF DAVIS DATASET [43]

ground truth masks. To gain a deeper insight, we further offer
a baseline (random) for both two methods: generates segments
via randomly selecting K annotation frames. The results of the
study are summarized in Table IV, averaged over all users for
each task. It shows the human decision is positive for cutout
task as the results with human participation are generally better
that with randomly selected annotations. However, according
to user feedbacks, scanning all the frames has already been
consumed much time, let alone determining which frames
should be best selected. These results confirm that our annota-
tion frame selection system successfully reduces the user effort
and improves the segmentation performance.

D. Runtime Analysis

We measure the running time of the proposed method
and the current fastest video cutout and segmentation track-
ing methods: RB09 [1], HV10 [46], SS14 [5], JC15 [6],
BV16 [39]. We directly run their publicly available codes. All
the tests were performed on the 480 p video clips of DAVIS
dataset [43]. As shown in Table V, our method is faster than
the others except RB09. Considering our promising results,
our method achieves a better tradeoff between performance
and computation efficiency.

V. CONCLUSION

This article presented a video cutout technique that effi-
ciently propagates user annotations for whole video sequence.
We propose a pyramid histogram appearance classifier, which
considers structure information into color statistics. It works
by repeatedly subdividing an image and computing histograms
of image features over the resulting subregions, has shown
promising results over traditional classifiers. The pyramid
classifier is completed with a set of geodesic distance based
dynamic foreground models, for jointly identifying the object.
Then, local classifiers are adopted for integrating multiple
local image features, such as color and shape information. The
final cutout results are achieved by the collaboration of global
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classifiers and local classifiers working on those uncertain
regions. Additionally, the proposed method intelligently selects
the optimal frame for human labeling, which reduces manual
effort and improves segmentation performance. Comprehen-
sive evaluation and comparison results on two databases,
namely DAVIS and JumpCut, have demonstrated the effective-
ness of the proposed approach at achieving promising results.

REFERENCES

[1] X. Bai, J. Wang, D. Simons, and G. Sapiro, “Video SnapCut: Robust
video object cutout using localized classifiers,” ACM Trans. Graph.,
vol. 28, no. 3, p. 70, 2009.

[2] W. Wang, J. Shen, X. Li, and F. Porikli, “Robust video object coseg-
mentation,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 3137–3148,
Oct. 2015.

[3] F. Zhong, X. Qin, Q. Peng, and X. Meng, “Discontinuity-aware video
object cutout,” ACM Trans. Graph., vol. 31, no. 6, p. 175, 2012.

[4] W. Wang, J. Shen, and L. Shao, “Consistent video saliency using local
gradient flow optimization and global refinement,” IEEE Trans. Image
Process., vol. 24, no. 11, pp. 4185–4196, Nov. 2015.

[5] S. A. Ramakanth and R. V. Babu, “SeamSeg: Video object segmentation
using patch seams,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 376–383.

[6] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen, “JumpCut:
Non-successive mask transfer and interpolation for video cutout,” ACM
Trans. Graph., vol. 34, no. 6, p. 195, 2015.

[7] N. S. Nagaraja, F. R. Schmidt, and T. Brox, “Video segmentation with
just a few strokes,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 3235–3243.

[8] K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative
classification with sets of image features,” in Proc. IEEE Int. Conf.
Comput. Vis., Oct. 2005, pp. 1458–1465.

[9] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2006, pp. 2169–2178.

[10] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen,
“Interactive video cutout,” ACM Trans. Graph., vol. 24, no. 3,
pp. 585–594, Jul. 2005.

[11] Y. Li, J. Sun, and H.-Y. Shum, “Video object cut and paste,” ACM Trans.
Graph., vol. 24, no. 3, pp. 595–600, 2005.

[12] S. Vijayanarasimhan and K. Grauman, “Active frame selection for
label propagation in videos,” in Proc. Eur. Conf. Comput. Vis., 2012,
pp. 496–509.

[13] T. Brox and J. Malik, “Object segmentation by long term analysis of
point trajectories,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 282–295.

[14] L. Chen, J. Shen, W. Wang, and B. Ni, “Video object segmentation
via dense trajectories,” IEEE Trans. Multimedia, vol. 17, no. 12,
pp. 2225–2234, Dec. 2015.

[15] C. Xu, C. Xiong, and J. J. Corso, “Streaming hierarchical video
segmentation,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 626–639.

[16] F. Xiao and Y. J. Lee, “Track and segment: An iterative unsupervised
approach for video object proposals,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 933–942.

[17] K. Fragkiadaki, G. Zhang, and J. Shi, “Video segmentation by tracing
discontinuities in a trajectory embedding,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 1846–1853.

[18] A. Papazoglou and V. Ferrari, “Fast object segmentation in uncon-
strained video,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 1777–1784.

[19] A. Faktor and M. Irani, “Video segmentation by non-local consensus
voting,” in Proc. Brit. Mach. Vis. Conf., 2014, vol. 2. no. 7, pp. 1–8.

[20] W. Wang, J. Shen, and F. Porikli, “Saliency-aware geodesic video object
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 3395–3402.

[21] W. Wang, J. Shen, R. Yang, and F. Porikli, “Saliency-aware video object
segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., 2017.

[22] W. Wang, J. Shen, H. Sun, and L. Shao, “ViCoS2: Video Co-saliency
guided Co-segmentation,” IEEE Trans. Circuits Syst. Video Technol.,
2017.

[23] Y. J. Lee, J. Kim, and K. Grauman, “Key-segments for video object
segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011,
pp. 1995–2002.

[24] T. Ma and L. J. Latecki, “Maximum weight cliques with mutex con-
straints for video object segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 670–677.

[25] D. Zhang, O. Javed, and M. Shah, “Video object segmentation through
spatially accurate and temporally dense extraction of primary object
regions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 628–635.

[26] I. Endres and D. Hoiem, “Category independent object proposals,” in
Proc. Eur. Conf. Comput. Vis., 2010, pp. 575–588.

[27] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 73–80.

[28] W. Wang, J. Shen, L. Shao, and F. Porikli, “Correspondence driven
saliency transfer,” IEEE Trans. Image Process., vol. 25, no. 11,
pp. 5025–5034, Nov. 2016.

[29] K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik, “Learning to
segment moving objects in videos,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 4083–4090.

[30] B. L. Price, B. S. Morse, and S. Cohen, “LIVEcut: Learning-based
interactive video segmentation by evaluation of multiple propagated
cues,” in Proc. IEEE Int. Conf. Comput. Vis., Sep. 2009, pp. 779–786.

[31] V. Badrinarayanan, F. Galasso, and R. Cipolla, “Label propagation in
video sequences,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2010, pp. 3265–3272.

[32] I. Budvytis, V. Badrinarayanan, and R. Cipolla, “Semi-supervised video
segmentation using tree structured graphical models,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 2257–2264.

[33] Y.-H. Tsai, M.-H. Yang, and M. J. Black, “Video segmentation via object
flow,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 3899–3908.

[34] J. Shen, Y. Du, W. Wang, and X. Li, “Lazy random walks for
superpixel segmentation,” IEEE Trans. Image Process., vol. 23, no. 4,
pp. 1451–1462, Apr. 2014.

[35] D. Tsai, M. Flagg, and J. M. Rehg, “Motion coherent tracking using
multi-label MRF optimization,” in Proc. Brit. Mach. Vis. Conf., 2010,
pp. 1–11.

[36] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg, “Video segmenta-
tion by tracking many figure-ground segments,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2013, pp. 2192–2199.

[37] F. Perazzi, O. Wang, M. Gross, and A. Sorkinehornung, “Fully connected
object proposals for video segmentation,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2015, pp. 3227–3234.

[38] L. Wen, D. Du, Z. Lei, S. Z. Li, and M.-H. Yang, “JOTS: Joint online
tracking and segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 2226–2234.

[39] N. Maerki, F. Perazzi, O. Wang, and A. Sorkine-Hornung, “Bilateral
space video segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2016, pp. 743–751.

[40] W. Wang, J. Shen, J. Xie, and F. Porikli, “Super-trajecotry for video
segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017.

[41] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282,
Nov. 2012.

[42] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, “Real-
time superpixel segmentation by DBSCAN clustering algorithm,” IEEE
Trans. Image Process., vol. 25, no. 12, pp. 5933–5942, Dec. 2016.

[43] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and
A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology
for video object segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2016, pp. 724–732.

[44] X. Dong, J. Shen, D. Yu, W. Wang, J. Liu, and H. Huang, “Occlusion-
aware real-time object tracking,” IEEE Trans. Multimedia, vol. 19, no. 4,
pp. 763–771, Apr. 2017.

[45] J. Chang, D. Wei, and J. W. Fisher, “A video representation using tem-
poral superpixels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 2051–2058.

[46] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Efficient hierarchical
graph-based video segmentation,” in Proc. IEEE Int. Conf. Comput. Vis.,
Jun. 2010, pp. 2141–2148.

Wenguan Wang, photograph and biography not available at the time of
publication.

Jianbing Shen, photograph and biography not available at the time of
publication.

Fatih Porikli, photograph and biography not available at the time of
publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


